Alison Chorley and Trevor Bench-Capon, ‘AGATHA: Automation of the Construction of Theories in Case Law Domains’ in T. Gordon
(ed.), Legal Knowledge and Information Systems. Jurix 2004: The Seventeenth Annual Confémsterdam: I0OS Press, 2004, pp.
89-98.

AGATHA: Automation of the Construction of
Theories in Case Law Domains

Alison Chorley and Trevor Bench-Capon
Department of Computer Science, The University of Liverpool, Liverpool, UK

Abstract. Some recent accounts of reasoning with legal cases view reasoning with
cases as theory construction. In this paper we describe AGATHA (ArGument Agent
for THeory Automation) which will automatically generate theories intended to ex-
plain a body of case law by following a process inspired by the style of argumentation
found in case based reasoning systems. Thus AGATHA behaves like a case based rea-
soner, but has as its end product a theory, which can be examined, critiqued or input
to our other tool, CATE, for refinement or to generate executable code.

1 Introduction

The importance of cases in legal reasoning has been recognised throughout the development
of Al and Law. Even approaches which took formalisation of legislation as their starting
point, e.g. [16], rapidly came to realise that crucial questions of the interpretation and ap-
plication of terms found in the legislation could be answered only be reference to cases (e.g.
[5]). Cases, despite some differences in the ways in which they are used, are of considerable
importance in Civil Law jurisdictions as well as Common Law jurisdictions [3], [14]. Given

this centrality of cases, a good understanding of their contribution and use is vital.

Despite the recognition of the importance of cases, there has been less agreement on
the way in which cases should be represented and used within Al and Law systems. We
may distinguish approaches which have used cases as a knowledge source, (e.g. [4]) on
a par with other sources such as statutes and commentaries, and those which have placed
importance on the structure and manipulation of cases as entities in their own right, as in, for
example, the various systems originating in HYPO [2], [1], [17], [7]. In the first approach
cases will be represented only implicitly, whereas in the second they must be represented
explicitly. Both these approaches capture aspects of the truth. Given a body of case law,
lawyers experienced in the field will be able to give rule like advice: for example we may,
with confidence, on the basis of case law, say that injury during a standard commute to work
will not be considered as “arising out of, or in the course of, employment” and so not attract
Industrial Injury compensation. On the other hand, when it comes to forming an argument in
the context of a particular legal case, precedents will be explicitly deployed, in the manner of
the HYPO like systems. Both approaches have their strong points: on the first approach we
can examine the knowledge that the system will apply: such verifiability may be essential,
for example, if we are to trust the operation of a system in administrative law. Moreover we
can examine the knowledge to critique the law, identifying areas where we are dissatisfied
with it and perhaps propose amendments to legislation accordingly. On the other hand, such
systems involve potentially subjective interpretation to extract rules from the case, and do
not provide very satisfactory models of legal reasoning. Also they fix the theory, whereas in
practice, the interpretation of cases is, at least potentially, continually open to reconsideration
(e.g. [12]). The second approach means that each new situation is thought through afresh on
its particular merits, rather than being decided mechanically.

90 AGATHA: Automation of the Construction of Theories in Case Law Domains

A middle way, which attempts to include both aspects, is to introduce the notion of theory
construction. For example McCarty states:

“The task for a lawyer or a judge in a "hard case" is to construct a theory of the disputed
rules that produces the desired legal result, and then to persuade the relevant audience that
this theory is preferable to any theories offered by an opponent” ([13], p285).

On this view, there is a body of knowledge, in the form of a theory, but these theories are
always, at least in principle, constructed afresh when a new case appears: thus the theory will
be subject to maodification in the light of the context provided by difficult cases. We therefore
attain the benefits of both approaches: the theory provides the knowledge for inspection (and
criticism and modification), and the process of construction can reflect the practice of legal
argument.

One recent account of reasoning with legal cases which develops on this view of rea-
soning with cases as theory construction is the work of Bench-Capon and Sartor, most fully
reported in [6]. In this paper we describe AGATHA (ArGument Agent for THeory Au-
tomation) which will automatically generate theories as described by [6], by following a
process inspired by the style of argumentation found in case based reasoning systems. Thus
AGATHA behaves like a case based reasoner, but has as its end product a theory, which
can be examined, critiqued or input to our other tool, CATE [10], [11], for refinement or to
generate executable code.

2 Argument Moves in HYPO and CATO

When thinking about how to argue a new case on the basis of case law, it appears that people
think in terms of analogising a past case to the problem or by distinguishing an unfavourable
case, rather than in terms of the theory constructors proposed in [6]. Therefore we wish
AGATHA to operate by following a series of argument moves as found in case based reason-
ers. We therefore take the moves of HYPO [2] and CATO [1] as our starting point.

HYPO creates 3-ply arguments using these four moves:

1) Analogising a problem to a past case with a favourable outcome.

2) Distinguishing a case with unfavourable outcome.

3) Citing a more on point counterexample to a case cited by an opponent.
4) Citing an as-on-point counterexample.

Either party may start the argument by using the first move and analogising the problem case

to a past case. The opposing party can then use the remaining three moves to distinguish or

counter the cited case. Then the original party can respond completing the 3-ply argument.
CATO extended HYPO with four extra moves:

5) Downplaying the significance of a distinction.

6) Emphasising the significance of a distinction.

7) Citing a favourable case to emphasise strengths.

8) Citing a favourable case to argue that weaknesses are not fatal.

Again the argument is started by one party using the first move to analogise a past case to the
problem case. The opponent can then respond to this move using another move and then the
original party can respond.

Although HYPO is designed simply to create the arguments whereas CATO is designed
to support law students learning how to argue with cases and which move to make at each
stage in the argument, CATO can also create its own arguments and explain them. As we
will target the basic theory of [6] rather than the extension designed to allow downplaying

Alison Chorley and Trevor Bench-Capon 91

and emphasising distinctions, moves 5 and 6 of CATO cannot be used. In any event we
would argue that these concern theory evaluation rather than theory construction. Also we
will not adopt moves 7 and 8 from CATO at this stage. Arguably these moves also relate to
evaluation as they strengthen rather than develop the theory. We therefore base AGATHA on
the moves found in HYPO, although we use the factor based representation of cases used in
CATO rather than dimensions as found in HYPO: again this is because we are using the basic
theory of [6], rather than the extended notion which incorporates dimensions.

AGATHA models the four moves described in HYPO although the distinguish move
is expressed as three distinct moves, depending on whether it is the citation of a case, a
rule preference or a value preference which is advanced to support the opposing view. The
counter example moves have been merged, since AGATHA only uses the most-on-point cases
available. Again the distinction between moves 3 and 4 relates more to evaluation that con-
struction. This gives AGATHA five moves, which we describe in the next section. The idea
is that AGATHA will use these moves to simulate a dialogue between the plaintiff and the
defendant, constructing the theory as a side effect of the dialogue.

3 Argument Moves in AGATHA

Cases are represented as sets of factors and an outcome, which is either plaintiff or defendant.
Factors, which represent particular relevant aspects of a case, are represented as a factor
name, an outcome favoured by the present of that factor, and a value which is the reason why
that factor favours that outcome.

The five moves available in AGATHA are: Analogise Case, Distinguish with Arbitrary
Preference, Distinguish with Case, Distinguish Problem, and Counter with Case.

1. Analogise CaseThis move cites a precedent case which has the outcome the party
making the move desires. The factors which are present in both the problem case and the
case being cited are sorted into the factors which support that outcome and those factors
which support the opposite outcome. A rule preference is made with the supporting factors
preferred over the contrary factors. This move follows the method of extracting rules from
cases proposed in [15].

The first move made has to Bealogise CaseAnalogise Casean also followDistin-
guish with Arbitrary Preferencdt cannot follow the other three moves

2. Distinguish with Case.This move distinguishes a case already cited in the debate
and cites a new case which has the different outcome. To distinguish the previously cited
case, AGATHA takes all the factors not used in the Analogise case move which support the
outcome and adds them to the factors used in the rule preference from the cited case. So,
for example, if the previously cited case was a defendant case, AGATHA takes the unused
defendant factors from that case and adds them to the used defendant factors. This creates
a larger rule containing all the defendant factors from the case which is then preferred over
the original plaintiff factors. This gives a more complex rule which can be used to decide
the previously cited case but cannot be used to decide the problem case because this case
does not contain all the factors contained in the new rule preference. AGATHA then cites
a precedent case with a different outcome from the previously cited case, to give a theory
supporting the other side.

Distinguish with Casean follow theAnalogise Case, Distinguish with CasedCounter
with Casemoves because these all cite a new case. It cannot folloWigterguish with
Arbitrary PreferenceandDistinguish Problenas these do not cite a case.

3. Distinguish with Arbitrary PreferenceThis move distinguishes the previously cited
case in the same way as for thestinguish with Casenove, but instead of analogising a new
case, AGATHA makes an arbitrary preference using the factors from the problem case that

92 AGATHA: Automation of the Construction of Theories in Case Law Domains

are included in the theory constructed by the analogising move and only these factors. If,
for example, AGATHA is making a plaintiff move, the arbitrary preference has the plaintiff
factors preferred over the defendant factors, otherwise, for a defendant move, the defendant
factors are preferred over the plaintiff factors. The preference is arbitrary because there is
no support for the preference; it just depends on what the party making the move needs to
assume to make their case.

It can follow theAnalogise Case, Distinguish with Caaad Counter with Casenoves
because they all cite a new case. It cannot follow@istinguish with Arbitrary Preference
andDistinguish Problenas these do not cite a new case.

4. Distinguish Problem.This move distinguishes the problem case instead of the pre-
viously cited case. If, for example, AGATHA is making a plaintiff move, it takes all the
plaintiff factors from the problem case and conjoins them as the antecedent into a single rule
with plaintiff as consequent.. The defendant factors from the problem case are similarly con-
joined as the antecedent of a single rule with defendant as consequent. Next the value sets
comprising the values associated with the factors in the two rules are created and a value
preference is created with the value set corresponding to the plaintiff factors being preferred
over the value set from the defendant factors. Finally a rule preference is created using this
value preference.

It can follow theAnalogise Case, Distinguish with Caaad Counter with Casenoves
because they all cite a new case. It cannot followDitinguish with Arbitrary Preference
andDistinguish Problenas these do not cite a new case.

5. Counter with Case.This move counters the previously cited case by finding a case
which is as-on-point or more-on-point as the previous case but was decided for the other
side. For an as-on-point counter move, the new case must have the same factors matching the
problem case as the previously cited case. The original rule and value preferences which are
supported by the previously cited case are replaced with new preferences which are opposite
to the original preferences and are supported by the new case.

For a more-on-point counter move, the new case must have the same factors matching the
problem case as the previously cited case and extra factors which match the problem case but
are not present in the previously cited case. The original rule and value preferences supported
by the previously cited case are replaced by new preferences which are supported by the new
case.

It can follow theAnalogise Case, Distinguish with Caaad Counter with Casenoves
because they all cite a new case. It cannot followDeinguish with Arbitrary Preference
andDistinguish Problenas these do not cite a case.

The moves can only be made once to a given theory apartistinguish with Arbitrary
Preferencewhich can be made more than once, &wlinter with Casevhich can be made
once for each of the cases which are most-on point. Note also that AGATHA may extend
beyond the third ply if moves are available to do so.

The argument moves used in AGATHA use the theory constructors from [6], [8] and [9]
to create the underlying theory. When a move is made, a number of theory constructors are
applied to extend the current theory. For example Ahalogise Casenove uses thinclude
Caseconstructor to include the cited case into the theory,tlickude Factorconstructor to
include all the matching factors with the problem case andvimye Factorsconstructor to
merge the plaintiff and defendant factors together. Finally it usePtbferences from Case
constructor to include the rule preference which is used to explain the decision for the cited
case. Table 1 shows the Theory Constructers which are used in each Move.

Alison Chorley and Trevor Bench-Capon 93

Table 1: Table of Theory Constructors used in each move.
Move Theory Constructors Used
Analogise Case Include Case
Include Factor
Merge Factors

Preferences from Case
Distinguish with Case Include Case

Include Factor
Merge Factors
Preferences from Case

Remove Rule Preference
Distinguish with Arbitrary Preference Include Factor

Merge Factors
Remove Rule Preference
Preferences from Case

Arbitrary Preference
Distinguish Problem Include Factor

Merge Factors
Value Preference
Rule Preference

From Value Preference
Counter with Case Include Case

Include Factor

Merge Factors
Preferences from Case
Remove Rule Preference

4 AGATHA Program

When AGATHA is first started it prompts the user to create a new project or to open an
existing project. If the user chooses to start a new project they are asked to choose the problem
case which is to be decided and then they are asked to choose the set of cases to be used to
explain the decision for the problem case. If the user chooses to open an existing project they
can then modify the project by replacing the problem case or by adding or removing cases
from the set of precedent cases. When the project has been given a name, AGATHA runs the
theory constructor to create all the theories that can be produced in this context.

AGATHAs interface, shown in Figure 1, contains buttons along the top of the interface
that, when selected, allow the user to open an existing project, start a new project or modify
the currently open project. The user can also choose to execute all the theories in the project
to produce a table of the theories and the corresponding outcomes for the problem case.

When AGATHA begins theory construction, it creates an initial theory (Theory 0) which
only contains the problem case and places it in\Making folder. AGATHA then takes
the lowest numbered theory (Theory 0 when the theory construction starts) and applies all
the moves which are applicable to it. For Theory 0, AGATHA can apply both plaintiff and
defendant moves but for all the subsequent theories the players must alternate, so a plaintiff
move must follow a defendant move, and vice versa. AGATHA checks which moves can be
made by checking the preconditions for each move against the theory. If the preconditions
match it applies the move. Each move that can be applied produces a new theory. When
alternative moves are available, a new branch is added to the tree of theories being created.

94 AGATHA: Automation of the Construction of Theories in Case Law Domains

i

3

 AGATHA ! _[a]x]

Alas : |
Project Buttons Bpen Project| ‘ Hew Project | Modify Project | Exit Project || |TheoryBultuns Execute Theory | Evaluate Theory

Constructed Theories Background Cases

cato1Theory.txt r‘_ <Arco, {F10, F16, F20%, D>

catod Theory10.4xt | |<Boeing, (F1, F4,F6,F10,F12,F14,F21), P>

cato1Theory100:txt | |<Bryce, {F1, F4, F6, F18, F213, P>

cato1 Theory101.txt <CMI, {F4, F6, F10, F16, F17, F20, F27}, D>

cato1Theory102.txt <CollegeWatercolour, {F1, F15, F26}, P>

catod Theory103.4xt <Den-Tal-EZ, {F1, F4, F6, F21, F263, P>

cato1Theory104.txt <DigitalDevelopment, {F1, F6, F8, F15, F18, F213}, P>

cato1Theary105.txt Ecoloaiv L4 L4 L34 £330 N

cato1Theory106.txt Problem Case Set of Cases

cato1Theory107 txt <Masaon, {F1, F6, F15, F16, F21}, P> | [<Goldberg, {F1, F10, F21, F273, P>
cato1 Theory108.txt <Mationallnstrument, {F1, F18, F21}, P>
cato1 Theary109.txt <Ecologix, {F1, F19,F21, F23}, D>

cato1Theory11.txt <Sandlin, {F1, F10, F16, F19, F27}, D>
cato1Theory1 10.txt

cato1Theory111.txt
cato1 Theary1 12t |
catn1Thenne 13.4xt =

Figure 1: Screen shot of AGATHA

As each move is applied to the theory, the resulting theories are checked and only those
which give the same outcome for the problem case as the party making the move are retained.
If the move made does not give the correct outcome, the theory is discarded because even
though the move could be applied to the theory it has not helped the party making the move,
and so does not represent a sensible move. Theories are then saved/ookimgfolder and
numbered sequentially.

When all legal moves have been applied to the node, the theory is movedThebey
folder. AGATHA then applies the process to the lowest numbered theory remaining in the
Workingfolder and continues until thé/orkingfolder has no more theories, at which point
the project is complete and all the resulting theories are displayed ©ahstructed Theory
window on the interface. The effect of this is to give a breadth first construction of the tree
of theories.

5 Wild Animals Example

This illustrative example uses the widely discussed wild animal cases used in [6] and [11].
This small example allows an exhaustive walk through of the operation of AGATHA.

In all three cases, the plaintiff (P) was chasing wild animals, and the defendant (D) in-
terrupted the chase, preventing P from capturing those animals. The issue to be decided is
whether or not P has a legal remedy (a right to be compensated for the loss of the game)
against D. In the first casPjerson v PostP was hunting a fox on open land in the traditional
manner using horse and hound, when D killed and carried off the fox. In this case P was held
to have no right to the fox because he had gained no possession of it. In the second case,
Keeble v Hickeringill P owned a pond and made his living by luring wild ducks there with
decoys, shooting them, and selling them for food. Out of malice, D used guns to scare the
ducks away from the pond. Here P won. In the third caeing v Hitchensboth parties
were commercial fisherman. While P was closing his nets, D sped into the gap, spread his
own net and caught the fish. In this case D won.

As analysed in [6], the cases can be described using four factors and three values. The
factors are: the plaintiff did not have possession of the anipfdps$, the plaintiff owned
the land pLand), the plaintiff was pursuing his livelihoodpLiv) and the defendant was
pursuing his livelihooddLiv). The first is intended to reduce litigatiobL(t); the second to
secure enjoyment of property rightgl§e¢ and the last two to promote productive activity
(MProd).

Youngis taken as the problem case wiiersonand Keebleas the set of cases that

Alison Chorley and Trevor Bench-Capon 95

) Theory 3 Example Theory 3
Example Theory 1 b?\ob M x Theory 8
Pr
Theory 1 Example Theory 2 Ao

(’Ouﬂter Keeb mml\s“
& Theory 4 D

o v Stingyjep, Example Theory 4
,@Q Propje,
» Theory 9

Theory 0
e Distinguish Problem Theory 10
<O
&é% S Y‘e’i
,ms““@)
Theory 2 I‘D;Imgul.sh Arb Pref Theory 6

Uglqu 1}0[)

Theory 7

Figure 2: Theories Constructed by AGATHA.

Theory Cases : <Young, {pLiv, pNposs, dLiv}, D>
Theory Factors :

Theory Rules :

Theory Preferences :

Theory Value Preferences :

Figure 3: Theory 0.

AGATHA can use to create the theorid&eebleis a plaintiff case and has two factor matches
with the problem casePiersonis a defendant case and has one factor matching with the
problem case.

Using all the moves defined in AGATHA, AGATHA creates ten theories which are shown
in Figure 2. Figure 2 also shows how the theories relate to each other. The rules, rule
preferences and value preferences for the subsequent theories are shown in Table 2.

From Theory 0 (Figure 3) onhjnalogise Casean be made. First the defendant move is
made by analogisingiersonto the problem case to produce Theory 1 (Table 2). Then the
plaintiff move is made by analogisiri{gebleto the problem case to produce Theory 2.

From Theory 1 theDistinguish with Caseand Distinguish with Arbitrary Preference
moves cannot be made because there are no extra factors that can be used to diBfi@guish
son Distinguish Problentan be made to distinguisfoungand produce Theory ounter
with Casecan be made becauBeebleis more-on-point thafiersonand produces Theory
4. Although, as discussed below, these theories contain the same rules and preferences, the
justification of the rules and preferences and the moves available may be different for each
theory.

From Theory Distinguish with Casean be used to distinguish Keeble and cite Pierson
to produce Theory istinguish with Arbitrary Preferencproduces Theory 6 andistin-
guish Problemproduces Theory 7Counter with Caseannot be used because Pierson is
less-on-point than Keeble

From Theory 3 there are no moves that can be made so this line of the dialogue stops

From Theory 4Distinguish with Casend Counter with Caseannot be used because
there are no more defendant cases to be cidestinguish with Arbitrary Preferencproduces
Theory 8 andistinguish Problenproduces Theory 9.

From Theory SDistinguish with CaseandDistinguish with Arbitrary Preferenceannot
be used because Pierson has no more factors that could be used to distindiggmguish
Problemproduces Theory 10. Note that the alternative way of distinguishing the problem,
by preferring MSec to LLit cannot be used because pLand is not pres&iouimy and so

96 AGATHA: Automation of the Construction of Theories in Case Law Domains

Table 2: The rules, rule preferences and value preferences for the theories

Theory Rules Rule Preference Value Preference

1 (1) pNposs —D

2,34 (1) pNposs —D 2 > 1) MProd > LLit
(2) piv —P

5 (1) pNposs —D 4 > @1 {MProd, MSec} > LLit
(2) piv @ —P

(3) pand —P
(4) {pLiv, pLand} —P
6,8 (1) pNposs —D 4 > @1 {MProd, MSec} > LLit
(2) piv —P 1) > @ LLit > MProd
(3) pand —P
(4) {pLiv, pLand} —P

7,9 (1) pNposs —D 2 > 1) MProd > LLit
(2) pLiv. —P @ > @ {LLit, MProd} > MProd
(3) dLiv. —D
(4) {dLiv, pNposs} —D

10 (1) pNposs —D @4 > @ {MProd, MSec} > LLit
(2) pLiv. —P 2 > Q) MProd > LLit

(3) pand —P
4) {pLiv, pLand} —P

this would not produce a pro-plaintiff theory fdfoung Counter with Case€annot be used
as there are no more defendant cases that can be used.

From Theory 6 the only potential moveAgialogise Casebut this move cannot be used
because there are no remaining plaintiff cases.

From Theory 7 there are no moves that can be used.

From Theory 8 the only potential movenalogise Casebut again this move cannot be
used because there are no remaining plaintiff cases.

From Theory 9 there are no moves that can be used.

From Theory 10 there are no moves that can be used.

The tree is therefore complete.

From an analysis of the preference sections of the theories, it can be seen that several
theories have identical preferences, even though these preferences may have different labels
and have been produced using different moves. There are three groups of identical theories
and two theories which are different.

The first group of theories contains Theories 2, 3 and 4. Theory 2 and Theory 4 are
identical becausPiersononly has one factor and so cannot contribute a rule preference so,
for Theory 4 wherCounter with Casés used Keeblecontributes the same rule preference
asAnalogise Casdor Theory 2. Theory 3 is a plaintiff theory and so takes the defendant
pNpossfactor from Theory 1 and adds the plaintiff factor from theungcase description
and creates a rule preference(pLiv—P > pNposs-D) which is the same rule preference
which Keeble contributes.

The second group contains Theories 6 and 8. These are identical because their preceding
theories are also identical (Theory 2 proceeds Theory 6 and Theory 4 precedes Theory 8) and
they are produced by making the same move.

The third and final group contains Theories 7 and 9 and they are identical due to the same
reasoning as for the second group.

Alison Chorley and Trevor Bench-Capon 97

Theory 5 is a distinct theory. To create Theory 5 from Theorexbleis distinguished
andPiersonis cited butPiersononly has a single factor which is already present in the theory
and so does not contribute a rule preference. A pro-defendant outcome is produced, however,
because the rule preference(fdLiv, pLand}— P) over(pNposs- D), is not applicable to
Young since pLand is not present, which allogs\Nposs~ D) to fire and give an outcome
for the defendant.

6 CATO Example

We have also used AGATHA on out other test domain, US Trade Secrets law, as modelled
in [1]. The domain is also described in [8]. This is a larger domain, containing 32 cases, 26
factors and 5 values. Running AGATHA on the cas®lason versus Jack Danigldiscussed

in [1]), with the limited set of cases of two plaintiff cases and two defendant cases, produces
a tree of depth 7 with 114 leaf nodes, of which 29 represent distinct theories. 16 represent an
outcome for the plaintiff and 13 represent an outcome for the defendant. Adding a further two
cases, gives rise to a theory space with maximum depth of 9 and 996 leaf nodes, representing
202 theories, 112 for the plaintiff and 90 for the defendant.

As the domain becomes larger, the game tree, and hence the theory space, becomes very
much larger. This is entirely to be expected, and as this is what invariably happens to a
game tree when we move from a simpler to a more complex game. It means, however,
that the exhaustive construction of the theory space will not always be the best strategy for
realistically large problems, especially if we want to avoid being selective in the inclusion of
cases in the background. The response to this is discussed in the next section.

7 Discussion and Future Work

AGATHA has shown that it is possible to construct the space of theories of a case law domain
by applying argumentation moves derived from work on reasoning with legal cases. By
using these moves AGATHA is following a cognitively plausible strategy, and the sequence
of moves is available to present the case to an opponent.

AGATHA currently generates the complete theory space. This space may include dupli-
cate theories, and theories which seem less acceptable than others. In the current version we
have made no attempt to prune the space since it may be of interest to see that theories can be
reached by different routes, so that it can be seen whether the same solution is independent of
who makes the first move, and the order in which moves are made. Moreover different routes
may supply different justifications for various theory elements. None the less, as the size of
the domain increases, there may be advantages in pruning the space. One obvious way to
do this is expand only one instance of identical theories. An alternative, and more promising
approach is to exploit the fact that we are dealing with a process that is a two player adver-
sarial game. In such games, it is typically the case that it is impractical to generate the whole
game tree and so techniques have been developed to address this problem in the analysis of
two player games, using heuristic search techniques.

Therefore a second way of controlling the expansion of the tree is to provide some heuris-
tic to select the moves to apply. We could rank moves according to their potential strength:
one plausible ranking would @ounter with Case, Distinguish with Case, Distinguish Prob-
lem, Distinguish with Arbitrary Preferencén this way only a single branch of the tree would
be produced from each node. A second source of expansion is the choice of cases to cite:
again some heuristic in term of similarity to the problem case would provide a sensible means
of limiting this growth.

98 AGATHA: Automation of the Construction of Theories in Case Law Domains

A more sophisticated approach would be to use a variety of heuristic search. To do this
we will need to have a means of evaluating the theories produced as the tree is developed. We
will then be able apply a standard technique to prune the game treey SuctA* search e.g.

[18]. Using such a heuristic search technique will enable the system to produce the theory
with results from “best play” by both sides.

The next step therefore is to develop a means to evaluate the theories. To complete our
family of programs, we will next develop ETHEL (Evaluation of THEories in Law), which
will evaluate theories using the criteria such as those proposed in [6], and including ex-
planatory power, simplicity, freedom from arbitrary preferences and the ability to generalise.
When this tool is available, we will use it to add heuristic search to AGATHA.

In this paper we have described AGATHA, a tool which automatically produces the theo-
ries which can be constructed to explain a set of cases described using factors. In producing
its theories, it follows a strategy derived from case based approaches to reasoning with cases,
which can be used to explain and justify the theories produced.

References

[1] Aleven, V. (1997). Teaching Case Based Argumentation Through an Example and Mdele3 Thesis.
The University of Pittsburgh.

[2] Ashley. K.D., (1990). Modelling Legal Argument. Bradford Books, MIT Press, Cambridge, Mass.

[3] Ashley, K.D. (2004). Case-Based Models of Legal Reasoning in a Civil Law Contéxtited paper.
International Congress of Comparative Cultures and Legal Systems of the Instituto de Investigaciones
Juridicas, Universidad Nacional Autonoma de México, Mexico City.

[4] Bench-Capon, T.,Practical Legal Expert Systems: the Relation Between a Formalisation of Law and
Expert Knowledgeln Bennun and Narayanan (eds) Computers, Law and Al, Ablex, 1991, pp191-201.

[5] Bench-Capon, T., Knowledge Based Systems Applied To Law: A Framework for Disomssn T.
Bench-Capon (ed)Knowledge Based Systems and Legal Applicatiohsademic Press, 1991, pp329-
342.

[6] Bench-Capon, T., & Sartor, G. 2003. A model of legal reasoning with cases incorporating theories and
values. Artificial Intelligence. Vol 150 1-2 pp97-143.

[7] Briininghaus, S. & Ashley, K. D.,. Predicting Outcomes of Case-based Legal Arguments. Proceedings of
the Ninth International Conference on Al and Law: ACM Press, New York, 2002, pp233-42.

[8] Chorley, A. & Bench-Capon, T., Developing Legal Knowledge Based Systems Through Theory Con-
struction. Technical Report ULCS-03-013, Department of Computer Science, The University of Liver-
pool, 2003. http://www.csc.liv.ac.uk/research/techreports/tr2003/ulcs-03-013.pdf

[9] Chorley, A. & Bench-Capon, T., Developing Legal Knowledge Based Systems Through Theory Con-
struction. Proceedings of the Ninth International Conference on Al and Law: ACM Press, New York,
2002, pp85-6.

[10] Chorley, A. & Bench-Capon, T., (2003)Reasoning with Legal Cases as Theory Construction: Some
Experimental Resultsln D. Bourcier (ed), Proceedings of Jurix 2003. 10S Press Amsterdam. pp173-82

[11] Chorley, A. & Bench-Capon, T., (2004)Support for Constructing Theories in Case Law Domaifrs
F. Galindo, M. Takizawa and R. Traunmuller (eds) Proceedings of DEXA 2004. LNCS 3180. Springer
Verlag: Berlin. pp508-517.

[12] Levi, E.H. 1949. An Introduction to Legal ReasonindJniversity of Chicago Press: Chicago.

[13] McCarty, L.T. 1995.An Implementation of Eisner v Macombém Proceedings of the Fifth International
Conference on Al and Law, 276-286. ACM Press: New York.

[14] MacCormick, D.N. & Summers, R. S. (ed.) 199nterpreting Precedents: A Comparative Stubart-
mouth Publishing: Aldershot, U.K.

[15] Prakken, H. & G. Sartor. 1998. Modelling Reasoning with Precedents in a Formal Dialogue @ame.
tificial Intelligence and Law6: 231-287.

[16] Sergot, M., Sadri, F., Kowalski, R., Kriwaczek, F., Hammond, P., Cory, H.: The British Nationality Act
as a Logic Program. Commun. ACM 29(5): 370-386 (1986)

[17] Skalak, D.B. & Rissland, E.L. (1992), Arguments and cases: an inevitable intertwidirigicial Intel-
ligence and Lawl: 3-44.

[18] winston, P.H., (1992). Artificial Intelligence. Addison Wesley: Reading, Mass.

