
Book Title
Book Editors
IOS Press, 2003

1

Regulations Expressed As Logical Models
(REALM)

Christopher Giblin a, Alice Y. Liu b, Samuel Müller a,1, Birgit Pfitzmann a and
Xin Zhou b

a IBM Zurich Research Lab, Switzerland
b IBM China Research Lab, China

Abstract. Recent years have seen a number of high-profile incidents of corporate
accounting fraud, security violations, terrorist acts, and disruptions of major finan-
cial markets. This has led to a proliferation of new regulations that directly impact
businesses. As a result, businesses, in particular publicly traded companies, face
the daunting task of complying with an increasing number of intricate and con-
stantly evolving regulations. Together with the growing complexity of today’s en-
terprises this requires a holistic compliance management approach with the goal of
continually increasing automation.

We introduce REALM (Regulations Expressed as Logical Models), a metamodel
and method for modeling regulations and managing them in a systematic lifecy-
cle in an enterprise. We formalize regulatory requirements as sets of compliance
rules in a novel real-time temporal object logic over concept models in UML, to-
gether with metadata for traceability. REALM provides the basis for subsequent
model transformations, deployment, and continuous monitoring and enforcement
of compliance in real business processes and IT systems.

Keywords. Compliance Management, Regulatory Requirements,
Logical Formalization, Temporal Logics, MDA

1. Introduction

Recent years have witnessed a growing amount of regulatory requirements directed to-
wards businesses, particularly publicly traded companies. Prominent examples of such
regulations include the Sarbanes-Oxley Act, the U.S. Patriot Act, Basel II, anti-money
laundering regulations and various de facto standards such as the International Financial
Reporting Standards (IFRS). Not only the sheer number of relevant laws and standards
but also the complexity of individual regulations is drastically increasing. Consequently,
affected businesses are confronted with the task of adapting to new and evolving regula-
tory requirements. While this process is initially driven by regulators, companies increas-
ingly recognize this challenge as an opportunity to improve operational transparency,
traceability and reporting.

We propose a systematic compliance management approach for addressing the in-
creasing breadth and complexity of regulatory requirements on businesses. Our approach

1Correspondence to: Samuel Müller, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland. Tel.: +41 44 724
8275; Fax: +41 44 724 8953; E-mail: sml@zurich.ibm.com.

is based on a lifecycle view of compliance management, which begins with the formal-
ization of regulations by means of metamodel for regulatory requirements that we call
REALM. Figure 1 provides a visual representation of the metamodeling approach as
compared with addressing each regulation as a single case. With the latter method, a
worst case M×N mappings are required to implement M regulatory requirements over a
set of N target systems. Systems include business processes, IT applications and systems,
and people issues such as education material. In contrast, the metamodeling approach
theoretically involves only M +N transformations.

��������	

�

��������	

�

��������	

��������	

�

�����������	���

�������� �����������������������

���

���

��������	

�

��������	

�

��������	

��������	

�

�������� �����������������������

���

���

Figure 1. Advantage of using the REALM metamodel for business compliance.

The benefit of the REALM metamodel is that different regulations, to a large ex-
tent, can be captured and formalized using a shared language and semantics. The reuse
of model elements and tools further eases the understanding and enforcement of regu-
latory requirements. An additional advantage of systematic compliance management is
that it offers traceability from the regulations to the systems; this enables businesses to
demonstrate to auditors or regulators how they achieve compliance, which is increasingly
required by new regulations.

A REALM model consists of the following parts:

• Concept model. We represent the domain of discourse of a regulation by a concept
model expressed in a UML profile developed for REALM.

• Compliance rule set. Regulatory requirements are represented as a set of formulae
in a novel real-time temporal object logic over the elements from the concept
model. Thus, e.g., sequencing and time constraints on actions can be expressed.

• Metadata. We capture meta-information about the structure of the legal source as
well as lifecycle data such as the enactment date.

The main novelty of our work is our use of a temporal object logic for regulation mod-
eling. The emphasis on temporal aspects stems from our focus on proactively enforcing
regulations at the level of business processes. In contrast, prior work focusses mainly on
comparing laws, applying them to finished cases, and on legal discourse, so that tempo-
ral aspects are of lesser specific importance. We need a real-time logic, i.e., a logic that
captures exact times and intervals and not only the order of events, since many regula-
tions contain concrete time constraints, such as data retention duration, the obligation to
respond to requests within a certain time, or the requirement to perform certain actions
contingent on other actions occurring or not within a specific past period. We are not
aware of the prior use of a real-time temporal object logic in regulation modeling, and the
logic itself is new in its combination of real-time temporal aspects with a modern object
model.

REALM models of regulatory requirements are part of and support a compliance
management lifecycle. Naturally, a regulation of interest must be initially stored, ana-
lyzed and understood. REALM models consisting of a concept model, a compliance rule
set, and metadata can then be derived. These abstract models are ultimately transformed
to implementation artifacts such as business process definitions, data retention policies,
access control lists, or correlation rules, while preserving traceability to relevant pas-
sages in the respective regulation sources. The artifacts are deployed into the business
and IT infrastructure of the enterprise. Compliance with the regulatory requirements can
be monitored and enforced leveraging the capabilities of the involved target technologies
and the common models shared by all stages of the compliance management lifecycle.

2. Related Work

Regulatory ontologies and logics have been commonly used in the development of expert
and formal dialogue systems and more recently in compliance-assistance solutions [1,
2,3,4]. Exemplary models of concrete regulatory requirements include the formalization
of the British Nationality Act, Dutch tax law and the Ontario Freedom of Information
and Protection of Privacy Act, and the representation of environmental regulations [5,
6,7,8]. While we have found that regulations usually contain many timing requirements
with references to real time, we are not aware of any efforts to formalize regulations
concentrating on real-time temporal object logics. In contrast to other work addressing
time in law (such as [9] or [10]), the real time temporal object logic of REALM integrates
naturally with modern object-oriented modeling systems and is therefore more intuitive
to use and understand in a business environment.

UML, the Unified Modeling Language, which we use for the concept models, is
a widely used standard for modeling object-oriented systems and has also been used
for ontology specification [11]. UML profiles are an extension mechanism for defining
domain-specific modeling elements by specializing UML metaclasses.

Using the Object Constraint Language (OCL), UML models can be complemented
by precise constraints. The official UML and OCL standards, however, provide no in-
herent support for expressing temporal predicates. Research into temporal extensions to
the OCL includes [12,13,14]. However, these extensions seem not capable of specifying
absolute real-time references as often needed in a legal context and may be impractical
when global constraints over independent objects or over objects with non-intersecting
lifetimes are needed. Furthermore, [14] does not support real time at all.

Propositional temporal logics (PTL) have mainly been proposed for the specifica-
tion of dynamic systems such as programs [15]. For real-time aspects, we build upon
the Timed Propositional Temporal Logic (TPTL), which employs a novel restricted use
of temporal quantification, by introducing a so-called freeze quantifier that binds a vari-
able to the time of a particular formula evaluation [16]. Approaches in logic to combine
temporal and object aspects do not allow real-time features as we need them [17,18].

3. REALM-based Compliance Management Lifecycle

In order to enhance an enterprise’s ability to adapt to new regulations and standards,
we propose a compliance management lifecycle process based on REALM models. We

describe this lifecycle for one enterprise and one new regulation. The process can be
abbreviated if another party, e.g., a standards body, has already formalized the regulation.

1. Determination of scope. First, the scope of the given regulation is determined
and its relevance and potential impact on the enterprise are evaluated. This may
restrict which parts of a given regulation must be modeled formally. It may also
suggest which parts of the enterprise need to be analyzed in greater detail for
compliance with this regulation.

2. Formalization of regulatory requirements. Next, those portions of the regulation
in scope for the enterprise are formalized into a REALM model, i.e., a concept
model, a compliance rule set, and metadata as described in the introduction. This
process will typically produce two models:

(a) Immediate model. First one creates a model that stays close to the terms and
requirements of the regulation; we call this the immediate model.

(b) Refined model. Many terms in a regulation are vague or coarse-textured,
obliging the enterprise to choose an instantiation in line with current best prac-
tices and its own strategic goals, practices and compliance management objec-
tives. We call the result of this phase, in which specific deployment values are
selected, the refined model.

Both immediate and refined models are REALM models, based on the same meta-
model.

3. As-is analysis of the enterprise. In order to assess the impact of the selected reg-
ulatory requirements in detail, a thorough as-is analysis is needed. The results
are models of the parts of the enterprise in scope of the regulation, e.g., business
processes, applications, data models, and IT resources.

4. Gap analysis. Given rigorous and concise representations of the regulation and
the potentially affected parts of the enterprise, the impact on the existing pro-
cesses, data and resources is assessed by comparing the new REALM models
with the as-is situation.

5. Deployment. Informed by the gap analysis the REALM models are deployed into
the identified target systems. Even where no gaps currently exist, formal deploy-
ment may prevent new gaps from arising when processes or IT systems change
in the enterprise. Depending on the type of requirements captured, target systems
can be process definitions, access control lists, privacy policies, storage policies or
correlation rules for event monitoring. The models are mapped onto these artifacts
by means of model transformations. These diverse deployment procedures are
represented in Figure 2. In terms of the Model Driven Architecture (MDA) [19],
one can regard the REALM models as platform-independent models (PIM) and
the target models as platform-specific models (PSM).

6. Compliance monitoring and enforcement. After a REALM model has been de-
ployed into a target system, compliance is sometimes ensured automatically. For
instance, a business process execution engine ensures that activities are executed
in the order specified in the process definition; hence ordering constraints de-
ployed by adapting that process definition are automatically enforced. However,
due to the inherent possibility of human or system error, compliance must almost
always also be monitored and enforced in real time. For instance, a business pro-
cess definition may state that an activity only takes two days, but unexpected cir-

cumstances may hold it up. Hence a rule with a time constraint would also be
deployed into a correlation engine for monitoring. Furthermore, if the correlation
engine detects a timeout, its only means to resolve the issue may be to send an
alert to the responsible compliance officer; in such cases compliance is finally
enforced on a higher level and not always with fully predetermined procedures.

���������	

���������	

���������	

�����		����

��
���
����������
���

�������	
����	
����

�����	
����	�����	�����������	

����	
�������
	

����	
�������
	

���	��������

���

������������	�
�� ������������	�
��

������������	�
�� ���

���
����	����	�������

Figure 2. Exemplary model transformations for deployment.

The need for a refined model containing specific assignments from a set of possible in-
stantiations of vague terms is a characteristic of modeling regulations for enterprise de-
ployment. This contrasts to deciding compliance of finished cases, legal discourse, or
law comparison, which can all be done with the immediate model alone. For instance,
if a regulation states that a response to certain requests must be given within a “reason-
able time”, then an enterprise has to decide how fast it can provide such answers and
how much earlier it wants to start an internal escalation process. Hence the immediate
model contains the concept “reasonable time”, while the refined model contains the con-
crete time assignment, e.g. “2 days”. Retaining both models provides traceability in case
the interpretations of or best practices for the vague term change, or the enterprise later
reconsiders its initial decision, as in the case of our example of 2 days.

Whether the refinements are compliant is ultimately a legal interpretation for which
an enterprise typically involves internal or external legal consultation. Capturing regula-
tions formally does not obviate this need. However, formalizing a regulation as imme-
diate and refined models facilitates identifying where such advice is needed and where
decisions are applied. This enhances transparency by moving interpretation out of the
hands of individual process owners or system administrators.

4. REALM Metamodel

In order to formalize regulations in the necessary detail, we need a language that is ex-
pressive enough to capture the variety of requirements occurring in actual regulations.
We formalize the objects and relationships occurring in a regulation in a concept model
(i.e., a domain ontology) and the constraints on these concepts by rules in a real-time

temporal object logic. The structural information of the actual regulations is captured
with a metadata model.

4.1. Concept Model

The REALM concept model captures the concepts and relationships occurring in a reg-
ulatory domain. For example, a regulation requiring that ‘Banks must verify the identity
of each customer’ includes the concepts bank, verify, identity, and customer and implicit
relations such as between bank and verify and between verify and identity.

REALM provides a set of predefined abstract types such as Person and Organization,
Process and Action, Artifact and Resource, Principle and Purpose, as well as Location
and Cost. We also include certain basic types such as String, Integer, and Boolean as in
UML. Concrete concepts like Customer should, wherever possible, be subtypes of the
predefined types, here Person. Individual instances like specific customers of a specific
bank are instances of these types. Using the predefined abstract types, together with the
following predefined relations, has two main benefits: easier and less error-prone con-
struction of the following temporal formulae, and easier specification of automated model
transformations as needed for deployment.

The concrete syntax of the predefined types and relations is given by a UML profile.
In a regulation model based on this profile, a class stereotype denotes that a concept is
of a certain predefined type and association stereotypes denote predefined relations. Our
choice to make actions a separate predefined type in REALM, although object methods
might seem more natural in the context of UML, was made with deployments in mind:
Top-level deployments will often be to business process or workflow models, where ac-
tions are also separate.

Relations in regulations can be understood in the same way as in logic and UML. An
equivalent term in logic is predicate; related terms in UML are associations and associa-
tion classes. REALM provides several predefined relations over the predefined types. For
example, Do is a predefined abstract relation between a person or organization and an ac-
tion. We write it Do(a,b), where a is an instance of a subtype of Person or Organization
and b an instance of a subtype of Action. This predicate evaluates to true if a executes ac-
tion b at the point in time where the predicate is evaluated. Other important examples of
predefined relations are On(a,b), Input(a,b), and Output(a,b) where a is an action and
b an artifact; they have the natural meanings. Similar natural relations have been defined
between most pairs of the predefined types.

Many time constraints in laws refer to the beginning or the end of an action. We use
subscripts ‘S’ and ‘F ’ for this. In the standard case of a relations with one action parame-
ter, we attach these subscripts to the relations, e.g., DoS(a,b) and DoF(a,b) evaluate to
true only at the point in time where the person or organization a starts executing action b
or finishes it, respectively.

For readability of the later formulae, we define a syntactic scheme for compos-
ing predefined binary relations into n-ary ones: For relations R1, . . . ,Rn, we define
R1 · · ·Rn(a1, . . . ,an+1) as R1(a1,a2)∧ . . .∧Rn(an,an+1), where R1 · · ·Rn is the string con-
catenation of the relation names. Clearly this is only defined if the second parameter
of Ri has the same type as the first parameter of Ri+1 for i = 1, . . . ,n − 1. Our nam-
ing scheme of predefined relations allows unique parsing of the concatenated names
by the initial capitals. For instance, we can now write DoOn(bank,open,account) for
Do(bank,open)∧On(open,account).

4.2. Compliance Rule Set

Compliance rules in REALM are expressed using a real-time temporal object logic. Re-
call that this logic as such is an important novel aspect of REALM. A REALM compli-
ance rule set is based on a REALM concept model.

We employ the so-called definitional approach (cf. [20]) to the formalization of reg-
ulatory requirements because we focus mainly on the temporal aspects at this stage and
do not intend to cover contrary-to-duty type obligations.

Structural requirements typically do not need a rule in the REALM compliance rule
set because they can be expressed with existing features of UML within the concept
model, in particular with multiplicities. For instance, one can thus model that a bank must
have exactly one auditing committee, or that each account has a personal identification
record attached to it.

We build upon the Timed Propositional Temporal Logic from [16]. The advantage of
this treatment of real time is a good balance between expressiveness and complexity [21].
We add the object model instead of atomic propositions, the specialization to actions with
lifetimes, and syntactic abbreviations such as the use of time with different units. The
basis are timed state sequences. The following definition assumes a definition of a set
States of states of our concept model, which we have only sketched above, and builds on
a basic discrete time type Time (e.g., milliseconds).

Definition 4.1 (Timed State Sequence) A timed state sequence ρ = (σ,τ) over a
REALM concept model consists of a state sequence σ = σ0σ1σ2 . . . and a time sequence
τ = τ0 τ1 τ2 . . . with σi ∈ States and τi ∈ Time for all i ≥ 0. The time sequence must be
monotonic, i.e., τi ≤ τi+1 for all i ≥ 0, and provide progress, i.e., for all t ∈ Time there
exists i ≥ 0 such that τi > t. 3

Temporal formulae are based on state formulae, i.e., formulae evaluated on one state σi

of a timed state sequence. State formulae are based on the relations from the concept
model, with the usual logical connectives and with OCL-like navigation among the ob-
jects. For instance, a notation a.customer for an account instance a refers to the customer
owning account a if there is an association from class Accounts to class Customer with
multiplicity 1. We model instances as passivated after the end of their lifetime, but still
available for navigation.

Temporal formulae are built with the usual (not real-time) temporal modalities such
as � (always), 3 (eventually) and � (sometimes in the past), as well as so-called freeze
quantifiers and relations on times. A freeze quantifier corresponds to the introduction of
a variable for a point in time. For instance, a formula part 3 t.φ means that eventually
formula φ will hold, and we introduce the time variable t for this point in time. Time rela-
tions within φ can refer to t, e.g., to express that t is at most 2 days later than some other
time t ′, introduced similarly with a freeze quantifier. Examples are given in Section 5.

As an example of how temporal modalities are defined, we present the definition of
the always modality without freezing. The fact that formula φ is true for the timed state
sequence ρ is denoted by ρ |= φ. The state sequence ρi for i ≥ 0 is defined by deleting the
first i elements from ρ. Then ρ |= �φ :⇐⇒ ∀i ≥ 0 : ρi |= φ for every formula φ. (Overall
this is a definition by structural induction.)

Banks must implement procedures for verifying the identity of each customer; these procedures must ensure
that the bank knows the true identity of each customer. At a minimum, the bank must obtain the following
information prior to opening an account:
1. Name;
2. date of birth;
3. residential address;
4. identification number.
The bank must verify the identity of each customer, using the information obtained in accordance with the
above requirements, within a reasonable time after the account is opened.
The bank must also implement procedures for responding to circumstances in which the bank cannot ensure
that it knows the true identity of the customer. These procedures should describe when the bank should close
an account, after attempts to verify the customer’s identity have failed.
The bank must implement procedures for making and retaining a record of all information obtained accord-
ing to the above requirements.
The bank must retain the recorded information for five years after the date the account is closed.

Figure 3. Fictitious regulation text inspired by 31 CFR paragraph 103.121 (Shortened for better readability).

4.3. Metadata

Besides concept models and compliance rule sets, REALM models may include meta-
data providing information about the modeled regulatory requirements. Two kinds of
metadata are required:

• Structural metadata link the formalized regulatory requirements to their source.
For instance, REALM model elements may be annotated with the name of the reg-
ulation, the modeled paragraph or section, a plain text description, and a hyperlink
to an online source or interpretation.

• Lifecycle constraints include the enactment date of the modeled regulation, the
validity duration, the expiry date, or validity constraints of individual compliance
rules or model elements.

Relating REALM model elements to structural metadata is fundamental to the traceabil-
ity and comprehensibility of formalized regulatory requirements.

REALM does not specify a single legislation metamodel but integrates with existing
models such as MetaLex [22], PAPI [23] and EnAct [24]. MetaLex, e.g., provides lifecy-
cle metadata for regulation parts through attributes such as date-enacted, date-effective
and date-repealed.

5. Example

Figure 3 presents an example text that we capture using the REALM metamodel. It
closely resembles the latest requirements made on financial institutions under the U.S.
Patriot Act, Section 326, in particular the rule that implements it, 31 CFR paragraph
103.121.

We now formalize these regulatory requirements. The REALM concept model is
shown in Figure 4. Recall that the concrete syntax is a UML class diagram using the
REALM UML profile, with stereotypes denoting predefined types and relations. Let us
explain a few non-obvious choices in this concept model: We model the retention of
an account as an explicit action because it may involve active steps, such as ensuring

continued accessability, even if the software systems change in the five years after the
account is closed. We model names etc. as attributes of both the customer and a record.
The former denote the true attributes of this customer, the latter the information that
the customer provides but that may still need verification. The attribute successful of
the action type VerifyIdentity is by default initialized to false and becomes true if the
correctness of the identity was established to the satisfaction of the bank.

���������	�
��

����

�������	����

���	�
��

����

���	�
��

�	
��

���	�
��

�����

���	�
��

������������

�������������

���

���	�
��

�����

����
��

���
���

�������	����

���	���	����	����

����������	����

���	�������	����

���	����	�

���
��

�������	����

���	���	����	����

����������	����

���	�������	����

���	����	�

���
��

��
�

�

�
��
�

�

�
��
�

�

�

��
�
�

�

��
�

�

�

����

�

�

����

�

�

���	��	�

�

�

� ���	�
�

�

����
�

�

� �

��!��

� �

Figure 4. REALM concept model for the example regulation.

In the following, we present the REALM compliance rule set. Figure 5 illustrates the
timing constraints on the actions for one account. Some details will become clear when
the formulae are explained. Note that this is not an activity diagram; all the relations
between actions which have no explicit constraints can be different than drawn here.
One can in principle turn every set of constraints into an activity diagram with many
alternatives, but as typical regulations consist of individual constraints, it is natural and
useful for traceability to start by modeling the given constraints one by one as formulae.
We plan to use time constraint diagrams as patterns for formula editing in the future.
There is a certain similarity to the graphical interval logic of [25].

����

�����

�	�

�����

����

�����

�
�������

�
�������

�
�������

Figure 5. Time constraints on the involved actions for one account.

∀bank ∈ Bank, open ∈ Open,∃obtain ∈ Obtain, r ∈ Record :

� (DoF(bank,open)

→ � (DoOutputF(bank,obtain,r)

∧ r = open.account.customer.record∧ r.name 6= null

∧ r.birthdate 6= null∧ r.address 6= null ∧ r.identnbr 6= null))

(1)

Formula (1) expresses the requirement that before a new account is opened, the bank
must at least obtain the name, the date of birth, the address and an identification number
of the customer. As to action durations, we required that the end of the action obtain is
before the end of open. According to the concept model, the information is gathered in a
record; we require that all four elements are non-null at the end of the action obtain. The
fact that the record is about the customer opening the account is reflected by the equality
about r; here we used OCL-like navigation. The temporal structure of the formula can be
read as follows: “Whenever (�) the bank finishes opening an account, then sometimes
in the past (�) it finished obtaining a record such that ...”

∀bank ∈ Bank, open ∈ Open, a ∈ Account ∃verify ∈ VerifyIdentity :

�topen. (DoOnF (bank,open,a)

→ 3 tverify. (DoInputF(bank,verify,a.customer.record)∧ tverify − topen ≤ 2[day]))

(2)

Formula (2) states that whenever a bank has opened a new account eventually it has
to finish the verification of the identity of the customer, based on the data collected in
the process of opening the account. The formula further formalizes that the verification
action needs to be completed within reasonable time, which has been interpreted to mean
at most 2 days in the given example. Thus this formula belongs to the refined model in
the sense of Section 3.1

∀bank ∈ Bank, a ∈ Account, verify ∈ VerifyIdentity :

� tverified. ((DoInputF(bank,verify,a.customer.record)∧ verify.successful = false)

→ 3 tclosed. (DoOnF(bank,close,a)∧ tclosed − tverified≤ 3[day]))

(3)

Formula (3) models that a bank must respond to circumstances where it cannot success-
fully verify a customer’s identity and has to close a tentatively opened account. In our
refined model we require that this happens within three days.

∀bank ∈ Bank, obtain ∈ Obtain ∃retain ∈ Retain :

� (DoF(bank,obtain) → DoOnS(bank,retain,obtain.record))
(4)

Formula (4) expresses that a bank has to retain the record of obtained customer informa-
tion.

∀bank ∈ Bank, a ∈ Account, retain ∈ Retain ∃close ∈ Close :

� tdelete. (DoOnF(bank,retain,a.customer.record)

→ � tclose. (DoOnF(bank,close,a)∧ tdelete − tclose ≥ 5[year]))

(5)

Formula (5) contains the constraint that a customer record may only be deleted if the
account has been closed for at least 5 years.

∀bank ∈ Bank, c ∈ Customer, r ∈ Record, verify ∈ VerifyIdentity :

� ((DoInputF(bank,verify,r)∧ verify.successful = true ∧ c = r.customer)

→ (r.name = c.name ∧ r.birthdate = c.birthdate

∧ r.address = c.address ∧ r.identnbr = c.identnbr))

(6)

Finally, formula (6) states that if the bank considers a verification successful then the
record entries are the correct customer data. We also made this a temporal formula be-

1Recall that “.” after a temporal operator and a variable is part of freeze quantification conserving the evalu-
ation time. Otherwise it is OCL-like navigation.

cause the example regulation does not require that the bank continually watches whether
the real customer data change. This requirement, in contrast to the previous ones, cannot
be deployed in the strict sense, because the real customer data are out of the enterprise’s
scope of control. We formalize it nevertheless in the immediate model for traceability of
the informal measures to be taken.

To conclude the picture, Figure 6 depicts an instance model of how a REALM com-
pliance rule set can be annotated with metadata.

��������	
�����������	���	�	�

	�����	�	����������	��������

���	�������

�������������

���	 	����	�����! �! !""#

Figure 6. Annotating REALM models with metadata.

6. Conclusion

We have introduced REALM, a metamodel for formally expressing regulatory require-
ments with special emphasis on the use in proactive compliance management in enter-
prises. A REALM model of a regulation consists of three pillars: a concept model of
the terms in the regulation, a compliance rule set in a novel real-time temporal object
logic, and metadata designating the source regulation and validity dates. Using an exam-
ple based upon the U.S. Patriot Act, we demonstrated that temporal aspects are impor-
tant and that a real-time logic is needed. Temporal aspects are also the first aspects that
need to be considered when adapting business processes. REALM is embedded into the
larger context of an integrated compliance management process, which tracks regulatory
requirements across their entire lifecycle, lends itself to model-driven transformation and
deployment and allows for continuous compliance monitoring and enforcement.

Acknowledgments

We thank Günter Karjoth, Luke O’Connor, Matthias Schunter, Naishin Seki, Markus
Stolze, Akihiko Tozawa, Michael Waidner, and the anonymous referees for their valuable
contributions and comments, and June Y. Felix, Mark Greene, and Jürg von Känel for
overall support.

References

[1] L. T. McCarty. A language for legal discourse – I. Basic Features. In Proc. 2nd Int. Conf. on
Artificial Intelligence and Law (ICAIL ’89), 180–189. ACM Press, 1989.

[2] H. Prakken. On dialogue systems with speech acts, arguments, and counterarguments. In
Proc. of JELIA’2000, The 7th Workshop on Logic for Artificial Intelligence, Lecture Notes in
AI, 224–238. Springer, 2000.

[3] H. Ryan, P. Spyns, P. De Leenheer, and R. Leary. Ontology-based platform for trusted reg-
ulatory compliance services. In On the Move to Meaningful Internet Systems 2003: OTM
Workshops 2003, Lecture Notes in Computer Science 2889, 675–689. Springer, 2003.

[4] V. Kabilan, P. Johannesson, and D. M. Rugaimukamu. Business contract obligation moni-
toring through use of multi tier contract ontology. In On the Move to Meaningful Internet
Systems 2003: OTM Workshops 2003, Lecture Notes in Computer Science 2889, 690–702.
Springer, 2003.

[5] M. J. Sergot, F. Sadri, R. A. Kowalski, F. Kriwaczek, P. Hammond, and H. T. Cory. The British
Nationality Act as a logic program. Communications of the ACM, 29(5):370–386,1986.

[6] T. M. van Engers, R. Gerrits, M. Boekenoogen, E. Glassée, and P. Kordelaar. Power: using
UML/OCL for modeling legislation - an application report. In Proc. 8th Int. Conf. on Artificial
Intelligence and Law (ICAIL ’01), 157–167. ACM Press, 2001.

[7] C. Powers, S. Adler, and B. Wishart. EPAL translation of the The Freedom of Information
and Protection of Privacy Act, March 2004. IBM and Information and Privacy Commis-
sioner/Ontario, http://www.ipc.on.ca/docs/EPAL%20FI1.pdf.

[8] S. Kerrigan and K. H. Law. Logic-Based Regulation Compliance-Assistance. In Proc. 9th
Int. Conf. on Artificial Intelligence and Law (ICAIL ’03), 126–135. ACM Press, 2003.

[9] L. Vila and H. Yoshino. Time in automated legal reasoning. Information and Communications
Technology Law,7(3):173–197, 1998.

[10] R. Hernandez Marin and G. Sartor. Time and norms: a formalisation in the event-calculus. In
Proc. 7th Int. Conf. on Artificial Intelligence and Law (ICAIL ’99), 90–99, 1999.

[11] S. Cranefield and M. Purvis. UML as an ontology modelling language. In Proc. of the Work-
shop on Intelligent Information Integration, 16th Int. Joint Conf. on Artificial Intelligence
((IJCAI-99)). CEUR Publications, 1999.

[12] S. Flake and W. Mueller. An OCL extension for real-time constraints. In Object Modeling
with the OCL, Lecture Notes in Computer Science 2263, 2002. Springer.

[13] S. Flake and W. Mueller. Past- and future-oriented time-bounded temporal properties with
OCL. In Proc. of the 2nd Int. Conf. on Software Engineering and Formal Methods (SEFM
2004). IEEE Computer Society Press, 2004.

[14] P. Ziemann and M. Gogolla. An OCL extension for formulating temporal constraints. Tech-
nical Report 1/03, Universität Bremen, 2003.

[15] A. Pnueli. The temporal logic of programs. In Proc. 18th IEEE Symposium on Foundations
of Computer Science (FOCS), 46–57. IEEE Computer Society Press, 1977.

[16] R. Alur and T. A. Henzinger. A really temporal logic. Journal of the ACM, 41/1:181–204,
1994.

[17] A. Sernadas, C. Sernadas, and J. F. Costa. Object specification logic. Journal of Logic and
Computation, 5(5):603–630, 1995.

[18] D. Distefano, J.-P. Katoen, and A. Rensink. On a temporal logic for object-based systems. In
4th Int. Conf. on Formal Methods for Open Object-Based Distributed Systems IV, 305–325.
Kluwer Academic Publishers, 2000.

[19] J. Miller, J. Mukerji (ed.). MDA guide version 1.0., May 2003. omg/2003-06-01, http:
//www.omg.org/cgi-bin/doc?omg/03-06-01.

[20] A. J. I. Jones and M. Sergot. Deontic logic in the representation of law: Towards a methodol-
ogy. Artificial Intelligence and Law,1(1):45–64, 1992.

[21] R. Alur and T. A. Henzinger. Real-time logics: Complexity and expressiveness. Information
and Computation, 104/1:35–77, 1993.

[22] E-POWER Consortium. Metalex, version 1.02, June 2003. http://www.metalex.org.
[23] F. Zeni, S. McGrath, and C. Hatter. Pan african parliamentary interoperability (PAPI), Report

and documentation, 2004. United Nations Department of Economic and Social Affairs, http:
//www.parliaments.info/PAPI/.

[24] T. Arnold-Moore and J. Clemes. Connected to the law: Tasmanian legislation using EnAct.
Journal of Information Law and Technology, (1), 2000.

[25] L. K. Dillon, G. Kutty, L. E. Moser, P. M. Melliar-Smith, and Y. S. Ramakrishna. A Graphical
Interval Logic for Specifying Concurrent Systems. ACM Transactions on Software Engineer-
ing and Methodology, 3(2):131–165, 1994.

