
Legal knowledge based systems
JURIX 93

Intelligent Tools for Drafting Legislation,
Computer - Supported Comparison of Law

The Foundation for Legal Knowledge Systems
Editors:

J.S. Svensson
J.G.J. Wassink

B. van Buggenhout

Cees groendijk and Henning Herrestad, An incremental approach to legal drafting
support, in: J.S. Svensson, J.G.J. Wassink, B. van Buggenhout (eds.), Legal knowledge
based systems JURIX 95: Intelligent Tools for Drafting Legislation, Computer -
Supported Comparison of Law, Lelystad: Koninklijke Vermande, pp. 31-42, 1993 ISBN 90
5458 089 5.

More information about the JURIX foundation and its activities can be obtained by
contacting the JURIX secretariat:

Mr. C.N.J. de Vey Mestdagh
University of Groningen, Faculty of Law
Oude Kijk in 't Jatstraat 26
P.O. Box 716
9700 AS Groningen
Tel: +31 50 3635790/5433
Fax: +31 50 3635603
Email: sesam@rechten.rug.nl

 1993 JURIX The Foundation for Legal Knowledge Systems http://jurix.bsk.utwente.nl/

J.S. Svensson, J.G.J. Wassink and B. van Buggenhout (eds.) (1993). Legal Knowledge Based Systems:
Jurix ’93: Intelligent Tools for Drafting Legislation, Computer-Supported Comparison of Law

31

AN INCREMENTAL APPROACH TO LEGAL
DRAFTING SUPPORT

CEES GROENDIJK AND HENNING HERRESTAD

Summary

We present an approach to the development of intelligent drafting tools where the drafter
is offered a ladder of incremental steps in formalization and application of LKBS
techniques, each step enabling a new kind of check on the draft. We describe what
benefits the drafter will gain at each step of the ladder and we describe some of the
possibilities of simulation within reach at the top of the ladder.

1 . Introduction

Various methods to support legal drafting with automated tools have been suggested. A
common approach is to develop 'intelligent document assembly tools' to support drafters
in creating legal documents from ready-made pieces of text. Although a success in the
restricted legal domain of repetitive legal document drafting [Staudt, 1993], this approach
is not suitable if we are to make a more general, context-free tool to enhance legal
drafting. The point of departure in our approach is closer to the approach known as
'normalization' [Allen & Saxon, 1985][Allen & Saxon, 1988]. Normalized drafts are
supposed to be less ambiguous and more readable than conventional drafts by making
explicit the use of propositional logical connectives. However, normalization attempts
became entangled in the double ambitions of becoming accepted as a typographical
standard by the legislative bureaucracy and of making legal expert systems [Gray,
1985][Gray, 1988]. Moreover, the attempts of [Allen & Saxon, 1986] at further
developing normalization were rendered impractical since the new answers they propose
to distinguish between different sentence interpretations were too fine-grained to bother
with. Yet another way to enhance legal drafting is to simulate some of the effects of the
proposed legislation. In the Seventies non-generalizable simulation programs were tailor-
made to simulate effects of particular legal drafts, while in the early Eighties attention
turned to expert systems [Bing, 1991]. Anticipating a revived interest following the
successes of [Svensson, 1993] and [denHaan & Breuker, 1991], we hereby present
some ideas concerning how to use knowledge-based-system techniques to support the
process of drafting legislation and to do simulation.

One of the main problems in using LKBS techniques to support drafting legislation is the
fact that the drafter has to do substantial formalization. We have doubts about the
willingness of a drafter to accept such inconveniences and about the more fundamental
issue of whether a general drafting tool can provide a formal language capable of
representing all the important concepts of newly drafted legislation. Perhaps we should be
pessimistic. Drafting law is a highly creative process, requiring the freedom of
unrestricted use of natural language if the drafter is to give the most ample expression to
her thought. However, we might be more optimistic. Even if different legislation looks
different on the surface, it is generally agreed by legal philosophers that most legislation
has a common underlying structure which can be formalised (e.g. [Susskind, 1987]).

Whether and to what extent drafting legislation can be supported, depends on many
factors such as the characteristics of the legal domain the new legislation refers to. Our
approach is to offer the drafter a set of tools to support the drafting process in a step-by-
step manner. We have called this an 'incremental' approach because, with each step, the
enhancement of the draft is taken a little further. With each step, the drafter is free to

An Incremental Approach to Legal Drafting Support

32

decide whether proceeding is worth the effort. The first step consists of adding
propositional logical connectives to the text. This step is easy and involves only
elementary assumptions about the underlying structure of the draft. Each additional step is
a little more ambitious, requiring more effort and assuming more about the underlying
structure of the draft. However, with each step there is added benefit.

We have implemented a Legal Knowledge Based System (LKBS) that we have named
Prodeon. Prodeon is capable of reasoning with propositions, predicates and deontic
operators (section 2). It is presented here because it has served as a point of departure and
a source of inspiration for our ideas how the process of legislation can be supported with
LKBS techniques. In its current state it is a LKBS and not a tool for drafting. As a result,
most of our suggestions would require some modification of the Prodeon framework.
Section 2 provides a brief overview of the Prodeon framework. Sections 3 to 9 describe
each of the seven steps we suggest for improving the drafting process.

2 . Prodeon

Prodeon is designed for representing fragments of law, using rules, propositions,
predicates and deontic operators. Prodeon can use forward chaining to deduce all
consequences of a given fact situation, or use backward chaining to try to reach a user-
provided goal. One of the major guidelines for the creation of Prodeon was that its
knowledge representation language should be easy to use. Therefore, the language allows
one to use simple constructs first, and then gradually to extend the language to a more
complex and rich knowledge representation.

As a starting point, one can use propositions as elementary building blocks of the
knowledge representation. Syntactically, a proposition must be a sentence enclosed with
brackets. Inspired by the language of normalization [Allen & Saxon, 1985], we will call
such a proposition a constituent sentence (cs). A constituent sentence can be negated
explicitly by preceding it with NOT.

(1) [This is a constituent sentence]
(2) NOT [The legislator applies the law]

In Prodeon, legal rules are represented as IF-THEN rules. These IF-THEN rules are
simple production rules; contrapositive inferences (modus tollens) are not made.
Antecedents and consequents may consist of combinations of constituent sentences
connected by AND or OR. Prodeon uses a prefix notation for these connectives. E.g:

(3) (IF [AND [person is unemployed][available for a job]] THEN [person
receives social benefit])

Prodeon allows the use of variables and constants in constituent sentences. Variables are
denoted as :<variable>; literal constants are simply written out and preceded by a colon.
Hence, the basic building block of the knowledge representation may also be a predicate.
We will refer to both propositions and predicates as constituent sentences.

(4) (IF [:<person> is caught in the act] THEN [:<person> is guilty])
(5) [:John claims copyright of :book]

Both on the conceptual and on the implementational level, Prodeon distinguishes between
two types of constituent sentences. A constituent sentence is of type sein if it refers to the
world as it is and of type sollen if it refers to what ought to be the case. Syntactically, a
constituent sentence is of type sollen if it is preceded by O (O representing 'obligatory').
E.g.:

(6) O [:John pays :Mary]

An Incremental Approach to Legal Drafting Support

33

As indicated earlier, a constituent sentence of type sein may be negated by putting the
word NOT in front of the constituent sentence. With constituent sentences of type sollen,
the situation is a bit different. The norm may be negated in two manners: before and after
the deontic operator O. Thus NOT O[cs], O NOT [cs] and NOT O NOT [cs] are all valid
expressions. Following Standard Deontic Logic [Follesdal & Hilpinen, 1971], O NOT
[cs] can also be written as F[cs] and NOT O NOT [cs] can be written as P[cs] (F and P
representing 'forbidden' and 'permitted'). In fact, Prodeon will accept any combination
of negations and one of the operators O, F, or P. Internally, it will be rewritten to its
equivalent form using O (e.g. NOT P[cs] is rewritten to O NOT [cs]).

Prodeon may either run forward or backward. To this end, a general (i.e. non-
instantiated) version of each constituent sentence is stored with four lists associated to it:
seinforward, seinbackward, sollenforward and sollenbackward. The forward lists
associates each constituent sentence to rules in which the constituent sentence is used in
the antecedent; the backward lists associates constituent sentences to rules in which the
constituent sentence is used as a consequent. To determine whether a rule is applicable,
Prodeon uses unification. Because sein and sollen is strictly separated, the rule selection
scheme ensures that Prodeon never attempts to unify a constituent sentence of type sein
with a constituent sentence of type sollen. With respect to constituent sentences of type
sein, if the systems attempts to unify two constituent sentences, it proceeds if both
constituent sentences are either negated or not negated and fails immediately otherwise.
With respect to constituent sentences of type sollen, the scheme is slightly more
complicated. Different combinations of negations fail immediately with two exceptions.
Firstly, a query consisting of a permitted constituent sentence (i.e. NOT O NOT [cs]) is
attempted to unify with an obligation (O[cs]) to express the rule that everything that is
obligatory is also permitted. Secondly, a query consisting of a negated obligation (not
O[cs]) is attempted to unify with a forbidden constituent sentence (O not [cs]) to express
the rule that everything that is forbidden cannot be obligatory. The difference between
sein and sollen also has consequences for the way conjunctions and disjunctions are
handled but we will not discuss these differences here.

In the following we shall present a number of ideas as to how the Prodeon framework
may be adapted to the drafting of legislation and how the draft may be adapted to fit the
Prodeon formalism. These ideas, however, have not been implemented. Sections 3 to 6
deal with formalization: propositional logical connectives, variables, deontic operators,
action operators and normative positions. Sections 7 to 9 deal with finding
inconsistencies, finding imperfect law and simulating some of the effect of the draft. Most
of the steps, but not all, require previous steps to be performed. However, each step is
performed for its own sake and benefit. The aim of the first four steps is to improve the
structure, readability and clearness of the draft by letting the drafter formalise certain very
general aspects of new legislation. The drafter has a choice between two methods to do
the formalization. Firstly, the drafter may choose to introduce the formal elements from a
menu while writing. The advantage of this method is to have more certainty that a correct
formalization is made. Secondly, she may choose to write freely and make the program
attempt to introduce the formal elements afterwards by searching for words denoting
concepts that may be formalised. The advantage of this method is to allow the drafter to
write unfettered. But this advantage is bought at the cost of having to steady and correct
the machine in making the formalization.

3 . Step 1: Making propositional logical connectives explicit

As a first step, introducing propositional logical connectives may help to eradicate
sentence ambiguity. Before sentence ambiguity can be settled, the drafter needs to mark
what the machine should treat as a separate sentence, or, in the language of normalization,
a constituent sentence (cs). A drafted rule may for instance state that:

An Incremental Approach to Legal Drafting Support

34

(7) "If a person is aged 18, and is mentally sane, or is supported by a
guardian, then he may enter into contracts".

The constituent sentences may be marked by square brackets in the following way:

(8) If [a person is aged 18,] and [is mentally sane,] or [is supported by a
guardian,] then [he may enter into contracts].

To the machine the rule, which at this stage is still ambiguous, will now be represented
as:

(9) If [cs-1] and [cs-2] or [cs-3] then [cs-4].

How could the program have discovered where to place the brackets? We suggest that the
program is made to search for words like if, then, and, or, bracketing everything between
them interpreting the commas as suppressed occurrences of and, or or. There may also be
long pieces of text where no such words are found. This text will simply be put in one
bracket pair, as it is only set aside by the machine as a separate proposition. We do not
pretend this to be a foolproof method, and we would demand the drafter to check the
result before proceeding. Actually, to the program it is the connectives that may be
formalised. The machine will capitalise these words, regarding them as the connectives of
propositional logic, or, the drafter may choose the connectives from a menu, and the
program will automatically bracket what is in between. Experience with Prodeon has
taught us that prefix notation for and, and or makes the representation more readable than
infix notation, especially if the conjuncts or disjuncts consist of more than two elements.
After the connective is introduced, the program therefore rearranges the sentences to make
the first part of the rule look as follows:

(10) (IF
[AND

[a person is aged 18,]
[is mentally sane,]

]
)

Additional constituent sentences connected by AND would just be added underneath.
However adding OR creates the ambiguity of whether we mean ((a AND b) OR c) or (a
AND (b OR c). In the first meaning the conjunction is nested within a disjunction, in the
second the disjunction is nested within the conjunction. The program has to ask the user
to clarify which meaning is intended. Here, choosing the latter meaning, the rule is
written:

(11) (IF
[AND

[a person is aged 18,]
[OR

[is mentally sane,]
[is supported by a guardian,]

]
]

 THEN
[he may enter into contracts.]

)

The brackets and indentation effectively marks at which level of nesting we find the
connected constituent sentences, disambiguating the meaning of the full sentence. If the
drafter chooses to let the machine generate this construct automatically, we encounter the
problem that the natural language words and and or sometimes change meaning. The

An Incremental Approach to Legal Drafting Support

35

program therefore has to ask for each occurrence whether the intended meaning is that of
conjunction or disjunction.

More structure may be added to the draft by making negation explicit. The easiest way is
to choose NOT from the menu while writing and then write out the constituent sentence to
be negated. E.g.:

(12) NOT [he may enter into contracts]

The second method is to let the machine search for occurrences of 'not' and 'no' within
constituent sentences, and, if such an occurrence is found, ask the drafter whether the
negation should be made explicit, i.e. lifted out of the constituent sentence and put in
front of it. Obviously, this method will not find all constituent sentences that indicate a
negation since there are many ways of expressing negation in natural language.

4 . Step 2: Equalising propositions and adding variables

So far, a constituent sentence was simply a sentence used in the draft. However, the
content of a constituent sentence may have many properties which are of interest if only
the drafter is willing to point them out.
Firstly, a drafter will often use different wordings to express identical meanings. For a
formalization it is important that constituent sentences that are identical or very close in
meaning are represented as equal. The program might support the drafter in the following
way. The program provides a list of all the constituent sentences used sofar in the
formalization. The drafter may then see that the two constituent sentences are actually
equivalent for the purposes of the formalization and decide that one of the two should be
replaced by the other, making them all the same. The method can be enhanced by using
text retrieval methods to order the list in such a way that constituent sentences with a high
number of identical words (stop words not included) appear next to each other because
these constituent sentences are often close in meaning.
Secondly, the list of constituent sentences may also be shortened by recognising that two
constituent sentences are actually identical if some part of the constituent sentences is
replaced by a variable. Suppose, for instance, that we have the following two constituent
sentences in the list:

(13) [The buyer has possession of the goods]
(14) [Claimant has possession of the goods]

Probably, if some part of these constituent sentences is replaced with a variable (cf.
section 2), these two can be replaced by:

(15) [:<person> has possession of the goods]

Subsequently, the program should present the drafter all the rules using (15) and ask
what other characteristics will limit the instantiation of the variable for each rule.

5 . Step 3: Making deontic operators explicit

Legal rules often state that in certain factual situations certain normative consequences
may be drawn. Consequences are normative when they state what may or ought to be the
case rather than what is or will be the case. Words like may and ought may be treated as
modal qualifiers, qualifying the subsequent constituent sentence as descriptions of
something ideal or optimal; and as implicitly stating that the actual circumstances may
deviate from the ideal. I.e. in expressing something as obligatory, one implicitly
recognises the possibility of transgression (cf. [Jones & Pörn, 1985] [Jones & Sergot,
1991]).

An Incremental Approach to Legal Drafting Support

36

To support a further formalization of the draft, the program should offer the drafter the
possibility to mark a constituent sentence with one of the deontic modal qualifiers
Obligatory, Forbidden, and, Permitted (abbreviated to O, F and P) in any combination
with negation (i.e. NOT may be placed before and after the qualifier). Using standard
deontic logic in defining F[cs] = O NOT [cs] and P[cs] = NOT O NOT [cs] [Follesdal &
Hilpinen, 1971] the program will translate each combination to what is probably the most
readable form (i.e O[cs], F[cs], P[cs] and NOT O[cs]). We do not think it is possible to
design a method to let the program point out the deontic modalities by itself; there are
simply too many ways to express deontic modalities in natural language.
The aim of this step is primarily to make the deontic modalities explicit and to let the
formalization be more equal to what Prodeon can accept. But also some inconsistencies
may be detected during this stage. For instance, the program may detect that it is
inconsistent to create the following two rules:

(16) (IF [:<person> is unemployed] THEN O[:<person> search for a job])
(17) (IF [:<person> is unemployed] THEN P NOT [:<person> search for a

job])

A further aim is to prepare the formalization for the steps to come.

6 . Step 4: Clarifying action operators and normative positions

Inside the normatively qualified constituent sentences there are certain elements which are
sufficiently general to merit another step up the ladder of formalization. Generally,
normative sentences refer to an agent and an action being performed by the agent
(cf.[Kanger, 1972], [Lindahl, 1977] and [Jones & Sergot, 1992]). The action may be
marked by a DO operator to be inserted between the deontic operator and the constituent
sentence (action descriptions are so varied and deeply submerged in natural language that
we do not see any possibility for the program discovering them itself). The agent is
represented by a variable or a constant as described earlier, and the program will secure
that an agent variable or constant is declared as attached to the DO operator whenever the
operator is used. We may thus construct expressions such as:

(20) P DO :John [:John has possession of :car]

to represent "It is permitted for John to bring it about that John has possession of the
car". Hence, the DO operator may intuitively be read as "<x> brings it about that [cs] is
true". The DO operator does not distinguish between intentional and non-intentional
action, or active and passive actions (e.g. opening the door and keeping the door open),
nor does it apply to laudable but unsuccessful attempts. The only property of the DO
operator is to state that what has been brought about is a fact. This makes it inconsistent
to state the following:

(21) DO :<x> [cs] AND NOT [cs],

which also makes it inconsistent to state the following:

(22) DO :<x> [cs] AND DO :<x> NOT [cs]

If the drafter finds that some action description in her draft confirms to the representation
of the DO operator, she may use it. Even if the DO operator abstracts away most of the
subtleties of our various concepts of action, the operator is still useful. It allows us to
distinguish between "x brings it about that [cs] is true", and "x brings it about that the
negation of [cs] is true":

(23) DO :<x> [cs]
(24) DO :<x> NOT[cs]

An Incremental Approach to Legal Drafting Support

37

The statement: "x is passive, or not responsible, for the truth or falsity of [cs]", is an
intuitive interpretation of:

(25) NOT DO :<x> [cs] AND NOT DO :<x> NOT [cs]

As (25) is a quite cumbersome statement, yet with great expressive potential, we shall
give it a special operator. We may represent statements like "x is obliged to be passive
(not responsible, unrelated) to the truth or falsity of [cs]" as:

(26) O PASS :<x> [cs]

With the introduction of PASS the possible precision of expressions of permission is
increased. With the use of the deontic operator as described in section 5, freedom of
choice could be expressed as: P[cs] AND P NOT[cs]. Now, freedom of choice may be
expressed as:

(27) P DO :<x> [cs] AND P DO :<x> NOT[cs] AND P PASS :<x> [cs]

Furthermore, there are three additional expressions of forms of 'restricted' freedom of
choice. Restricted because one of the conjuncts is forbidden:

(28) P DO :<x> [cs] AND P DO :<x> NOT[cs] AND F PASS :<x> [cs]
(29) P DO :<x> [cs] AND F DO :<x> NOT[cs] AND P PASS :<x> [cs]
(30) F DO :<x> [cs] AND P DO :<x> NOT[cs] AND P PASS :<x> [cs]

The program may try to make the drafter disambiguate her expressions of permission by
asking which of the above statements is closest to the drafter's intention. However, the
drafter may feel unable to make a categorical decision about this. The statements may be
too specific for her draft. We do not want to force a decision. The point is only to show
her the available options. She may use these options or abstain from them as she likes.

If freedom is restricted further, by forbidding two of the conjuncts, we have the
equivalent of respectively:

(31) O DO :<x> [cs]
(32) O DO :<x> NOT[cs]
(33) O PASS :<x> [cs]

Together, the statements 27 to 33 are exhaustive in describing the seven possible
normative positions of a single agent. The disjunction of the seven positions is a
tautology, and the conjunction of any of the positions is a contradiction. Hence, there is
an advantage of specifying the normative conclusion of a rule as a particular normative
position. This is the possibility of identifying as inconsistent any set of normative
statements expressing that <x> has more than one normative position with respect to the
same proposition.

This only briefly illustrates what may be achieved when we start to expand the
expressiveness of our formalism by adding an action operator to the deontic operators.
Further increases in expressibility, adding relations between agents or iterations of
operators, are described in [Lindahl, 1977]. [Jones & Sergot, 1992] describe how the
whole approach may be generalised to take into account a whole range of other possible
operators. However, the resulting sets of nuances of expression very quickly becomes
very large and each formal statement very complicated. We fear that, by presenting the
drafter with several thousand possible nuances of interpretations even for simple
sentences, we may ridicule the whole approach. We therefore believe that development of
the tool in the direction of an expanded formalism ought to be guided by more experience

An Incremental Approach to Legal Drafting Support

38

with legal drafting, in order to be certain that the nuances of interpretation are of practical
value.

7 . Step 5: Finding inconsistencies

As a general rule, the application of legislation should not lead to contradictions. For
instance, if the following rules

(34) (IF [:<X> is married] THEN [:<X> receives tax reduction])
(35) (IF [:<X> receives unemployment benefit] THEN NOT [:<X> receives

tax reduction])

are applied to the following test case

(36) [:John is married]
(37) [:John receives unemployment benefit]

then Prodeon is able to derive

(38) [:John receives tax reduction]
(39) NOT [:John receives tax reduction]

which is an inconsistency that should be pointed out to the drafter.

Basically, the approach to be taken to find such inconsistencies is to create a set of test
cases, apply the formalised version of the new legislation to these test cases one by one
and check the results for inconsistencies. An obstacle to this approach is that one has to
find or create a set of test cases. In some domains, one may be lucky enough to have a set
of test cases available beforehand which can be adapted to the formalization used.
[Svensson, 1993] describes various methods to adapt the set of test cases to a LKBS.
However, such a set of test cases will usually not be available. Hence, we will first
discuss some methods to create a set of test cases.

A first method is to create the set of test cases by hand. The drafter, probably, knows to
what cases the new legislation should apply. Prodeon can only apply the rules to a test
case if the case is expressed as a set of constituent sentences which are also used in the
formalised version of the new legislation. This observation leads to two remarks. Firstly,
the program can be used to support the creation of test cases by presenting all the
constituent sentences used in the formalised rules and offering the facility to make
selections, store cases etc. The second point is of a different nature: if the drafter feels that
the constituent sentences offered do not allow her to express the crucial points of a test
case she has in mind, then the rules are most certainly not detailed enough. Hence,
creating test cases can also be seen in itself as a check on the drafting process.

A second method to obtain a set of test cases is to generate the cases automatically. For
instance, one might suggest to create all possible test cases by creating all possible
combinations of constituent sentences exhaustively (cf. [Alchourrón & Bulygin, 1971]).
There are, however, two major problems with this approach. Firstly, such an approach
would usually lead to more cases than one can handle [Nieuwenhuis, 1989], [Breuker,
1991]. For instance, even in a well structured domain such as traffic regulations,
combining relevant traffic characteristics to obtain all possible traffic situations (types of
roads, types of actions etc.) may easily lead to a combinatorial explosion [Breuker,
1991]. A second problem is that if constituent sentences are put together blindly, many of
the resulting cases would not make sense as a description of a real-word situation and,
hence, these cases are useless as with regard to finding inconsistencies. Depending on the
domain, both problems can be tackled more or less successfully by using world
knowledge to constrain the case generation in such a way that an acceptable number of

An Incremental Approach to Legal Drafting Support

39

valid cases is produced. For instance, [Nieuwenhuis, 1989] uses in its Rule Analysing
Tool common-sense knowledge to filter out the test cases with mutually exclusive facts
(e.g. male and pregnancy).

If a set of test cases is available or made available, Prodeon is able to find inconsistencies
in the formalised version of the draft, by taking the test cases one by one and applying all
applicable rules to constituent sentences of the test case forwardly until no addition
constituent sentences can be deduced. Then all the constituent sentences are checked for
inconsistencies, i.e. Prodeon searches for similar constituent sentences with incompatible
prefixes. Obviously, the following

(40) [cs] & NOT[cs]

constitute an inconsistency. If deontic operators are used in the formalised draft, the
following (and equivalent) combinations are inconsistencies

(41) O[cs] & NOT O[cs]
(42) O NOT [cs] & NOT O NOT [cs]

The latter may also be read as (F[cs] & NOT F[cs]) or (NOT P[cs] & P[cs]). Prodeon
may also discover inconsistencies in the form of a normative conflict:

(43) O[cs] & O NOT [cs]

which can also be read as (F NOT[cs] & F[cs]). The two combinations:

(44) O[cs] & NOT O NOT [cs]
(45) O NOT [cs] & NOT O[cs]

which can also be read as (O[cs] & P[cs]) and (F[cs] & NOT O[cs]) are not considered
inconsistent because in Prodeon permission only means negation of prohibition;
permission is entailed by obligation (cf. section 2) and thus also compatible with
obligation. If, however, permission is interpreted as a permission of choice, i.e. a
permission entails the stronger statement P[cs] AND P NOT [cs], then (44) and (45)
should also be considered inconsistencies.

Additional inconsistencies may be found if the formalization uses action operators and
normative positions. These are already described in section 6.

Even if the program succeeds in finding inconsistencies, there may be other properties of
the text (i.e. hierarchical structures or other relations of preference) that makes the drafter
decide that the inconsistency is only apparent or not a problem. Such relations have been
the matter of intensive study [Prakken, 1993], and may possibly be explicitly represented
and reasoned within some future version of our program. Our present ambition is only to
point out the inconsistencies to the drafter, who may decide whether they are real,
unintended contradictions or only appear to be.

8 . Step 6: Finding lege imperfecta

With new legislation, new obligations and prohibitions are created. But what to do if
people break their obligations or perform acts that are forbidden? Ideally, the draft should
give an answer to this question. To put it differently, the draft should provide, what can
be called, repair rules for the following two combinations:

(46) O[cs] & NOT [cs]
(47) O not [cs] & [cs]

An Incremental Approach to Legal Drafting Support

40

(the latter being equivalent to F[cs] & [cs]). One way to be sure that a repair rule is
present for each new obligation or prohibition, is to ask the drafter to point these rules
out. To support this, the program could make a list of rules out of the formalised version
of the draft that are potential repair rules and present them to the drafter. For instance, in
case of a new prohibition F[cs], the top of the list of potential repair rules should consist
of the rules with both F[cs] and [cs] in the antecedent. Since repair rules often do not
repeat the prohibition F[cs] in the antecedent, the list should further include rules which
refer to the prohibited behaviour [cs] in the antecedent without referring to F[cs].

Having repair rules is one thing. They should also be applicable in cases where they are
needed. Applicability is not certain, because repair rules may often have more
preconditions than the violation they try to cure. For instance, there may be several repair
rules for the same violation, each referring to different situations in which the violation
takes place. The method to check that at least one repair rule is applicable is somewhat
similar to the procedure presented in the previous section using a set of test cases (section
7). The formalised version of the new legislation is applied to each of the test cases and
Prodeon checks whether one of the combinations (46) or (47) occurs. If so, it is verified
that at least one repair rule, pointed out by the drafter, has indeed been applied.

Repair rules often create new obligations or prohibitions when applied. Hence, the
requirement that obligations and prohibitions should be accompanied by a repair rule
cannot be made too rigid because, otherwise, this requirement could lead to an unending
regress of repair rules, each repair rule creating an obligation or prohibition which may be
violated again.

9 . Step 7: Simulating draft application

The previous two sections described the application of the formalised version of the draft
to test cases with the aim to evaluate certain technical aspects of the draft. When the draft
has reached a stage of near completion and a high level of technical soundness, one might
be more interested in the question whether the new legislation will indeed have the results
the legislator wishes to achieve by bringing the legislation into operation. In this respect
we may distinguish between two levels of evaluation: the micro and the macro level
(cf.[Svensson, 1993]). On the micro level, an evaluation is made of the effects the new
legislation will have when applied to individual cases. A macro level evaluation tries to
obtain detailed data of some of the effects the new legislation will have on the society.

With respect to the micro level, the approach is straightforward. Apply the formalised
version of the draft to the test cases one by one and check whether the results are in
accordance with what one might expect. The test cases already created to find
inconsistencies and lege imperfecta will do as a starting point. Several researchers have
had success with this approach. For instance, [denHaan, 1992] used a LKBS to validate
the new Traffic Regulations (RVV90) and found various flaws (e.g. just to name a
hilarious result: the new regulation prescribes that in some situations, trams should be on
the road instead of on the railway). Svensson has used the technique quite extensively to
evaluate the Revision of the General Social Security Act [Svensson, 1993]. His study
shows that results of automated rule application should be evaluated very carefully. Most
of the unexpected results originated from errors in the test cases or errors in the
formalization of the draft. Hence, if results of the simulation are not to the satisfaction of
the drafter, she should not immediately return to the drafting table, but should first
examine the rules in the rule-based system as well as the definition of the case that
produced the unexpected result. However, Svenssons evaluation also shows that errors
may be found in a draft. His evaluation exhibited that the Revision of the General Social
Security Act contained an erroneous method to determine the living cost supplement.

In certain domains, one might attempt to extend the approach presented above to make a
macro level evaluation of the draft. Basically, the idea is to apply the formalised version

An Incremental Approach to Legal Drafting Support

41

of the draft to a large number of test cases which preferably should be representative for
the population of subjects the new legislation will apply to. Instead of studying each case
separately, the results are integrated (e.g. by statistical means). For instance, such an
evaluation should be able to answer questions like: How many people will receive less
social benefit after the Revision of the General Social Security Act has been made
operational. [Svensson, 1993] provides a detailed study and discussion of this idea.

A serious limitation of this approach is that it only measures so-called (cf.[Svensson,
1993]) first-order effects. The approach assumes that everything remains the same except
for the new legislation. In many domains this is an unrealistic assumption. People do not
simply wait for the new legislation to be applied to them, they change their behaviour or
change the situation they are in to profit from the most favourable rules and to avoid
others. In fact, behavioural change is often the main purpose of newly issued legislation.
Hence, in many domains this approach may not be useful.

However, in some domains, first order effects are interesting and are not disturbed by
higher order effects. Also in some domains it may be useful to measure first-order effects
in order to obtain insight in higher order effects. For instance, a government may be
planning to issue an amendment to the Tax Law in order to increase certain taxes for
unemployed people with the idea that, as a result, unemployed people will be more
motivated to apply for badly paid jobs and thus unemployment is reduced. Obviously,
without actually bringing the amendment in operation, it will be very hard to forecast
whether unemployment will actually reduce. It may, however, be within reach to apply
the simulation technique [Svensson, 1993] describes in order to ascertain that the
amendment will actually lead to a reduced income of unemployed people. It might, for
instance, well be that social security regulations overcompensate the increased tax.

1 0 . Conclusion

We have presented a ladder of incremental steps in formalization and application of LKBS
techniques to enhance the process of drafting legislation, each step enabling a new kind of
check on the draft. In the first step, a rudimentary logical structure is added to the draft in
order to improve the structure and to eradicate sentence ambiguity. Additional steps offer
a different perspective for examining the draft and improving the formalization. If the
drafter has taken the effort to climb the ladder so far, we offer some ideas for as to how
the drafter may make use of the formalism to check some of the properties of the draft,
verify the legal consequences and some macro level effects. The formalism that is
proposed may be made more sophisticated, but in its current form, it may be sufficient for
the checks we are suggesting. If these checks prove to be of practical benefit for drafters,
we shall happily go along extending the ladder. However, we believe in the need for the
strategy of tempting the drafters to climb the ladder by presenting some extra benefit for
every step they climb, rather than demanding them to accept an all or nothing package of
formal tools.

References
[Alchourrón & Bulygin, 1971] Alchourrón, C.E. & Bulygin, E. (1971) Normative

Systems, New York, Springler Verlag.
[Allen & Saxon, 1985] Allen, Layman & Saxon, Charles (1985), Computer aided

normalizing and unpacking: Some interesting machine-processable transformations of
legal rules, in Walter, Charles (ed.), Computing Power and Legal Reasoning, West
Publishing Company, St. Paul, Minn.

[Allen & Saxon, 1986] Allen, Layman & Saxon, Charles (1986), "Analysis of the logical
structure of legal rules by a modernized and formalized version of Hohfeld
fundamental legal conceptions", in Martino, A.A. & Socci Natali, F. (eds.),
Automated Analysis of Legal Texts -Logic-Informatics-Law, Elsevier Science
Publishers B.V. (North-Holland)

An Incremental Approach to Legal Drafting Support

42

[Allen & Saxon, 1988] Allen, Layman & Saxon, Charles (1988), Exploring Computer-
Aided Generation of Questions for Normalizing Legal Rules, in Walter, Charles
(ed.), Computing Power and Legal Language, Quorum books, New York

[Bing, 1991] Bing, Jon (1991), Improving regulatory management: The use of
information systems, NORIS(96)II - NRCCL Oslo.

[Breuker, 1991] Breuker, J.A. (1991) Towards a workbench for the legal practitioner.
In: Noortwijk, C. van, A.H.J. Schmidt & R.G.F. Winkels (eds), Legal Knowledge
bases systems; Aims for research and development, Lelystad, Koninklijke Vermande
BV

[denHaan & Breuker, 1991] denHaan, N. & Breuker, J.A. (1991) A tractable Juridical
KBS for applying and teaching traffic regulations. In: J.A Breuker, R.V. de Mulder,
J.C. Hage (eds), Legal Knowledge Based Systems: Model-based legal reasoning,
JURIX'91, Koninklijke Vermande, Lelystad, NL, 1991

[denHaan, 1992] N. den Haan (1992) TRACS: A Support Tool for Drafting and Testing
Law. In: Grütters, C.A.F.M., J.A.P.J. Breuker, H.J. van den Herik, A.H.J.
Schmidt and C.N.J. de Vey Mestdagh (eds), Legal Knowledge Based Systems:
Information Technology & Law, JURIX'92, Koninklijke Vermande, Lelystad, NL,
1992

[Follesdal & Hilpinen, 1971] Follesdal, D and R. Hilpinen (1971) Deontic Logic: An
Introduction, in: R. Hilpinen (ed.) Deontic Logic: Introductory and Systematic
Readings, D. Redider Publishing Company, Dordrecht Holland

[Gray, 1985] Gray, Grayfred F. (1985), Statutes enacted in normalized form: The
legislative experience in Tennessee, in Walter, Charles (ed.), Computing Power and
Legal Reasoning, West Publishing Company, St. Paul, Minn.

[Gray, 1988] Gray, Grayfred F. (1988), An Experiment with Normalized Statutes in an
Emycin Expert System, in Walter, Charles (ed.), Computing Power and Legal
Language, Quorum books, New York.

[Jones & Pörn, 1985] Jones, A.J.I. and Porn, I. (1985) Ideality, sub-ideality and deontic
logic, Synthese 65.

[Jones & Sergot, 1991] Jones, A.J.I. & Sergot, M. (1991) On the Role of Deontic Logic
in the Characterization of Normative Systems, In: Ch. Meyer and R.J. Wieringa
(eds.), Proceedings of the First International Workshop on Deontic Logic in
Computer Science, Amsterdam, the Netherlands.

[Jones & Sergot, 1992] Jones, Andrew J.I. & Sergot, Marek (1992), Formal Specifica-
tion of Security Requirements using the Theory of Normative Positions, Proceedings
of ESORICS-92, Toulouse.

[Kanger, 1972] Kanger, Stig (1972) Law and Logic, Theoria, vol. 38, pp. 105-132.
[Lindahl, 1977] Lindahl, Lars (1977), Position and Change - A Study in Law and Logic,

D. Reidel Publishing Company, Dordrecht Holland.
[Lindahl, 1991] Lindahl, Lars (1991), Stig Kanger's Theory of Rights, 9th Int. Congress

of Logic, Methodology and Philosophy of Science, Uppsala Sverige.
[Nieuwenhuis, 1989] Nieuwenhuis, M.A. (1989) Tessec: een expertsysteem voor de

Algemene Bijstandswet, Deventer, Kluwer
[Prakken, 1993] Prakken, H. (1993) Logical tools for modelling legal argument, Thesis,

January 14, Vrije Universiteit, Amsterdam
[Staudt, 1993] Staudt, Ronald W. (1993), Does the grandmother come with it? Teaching

and practising law in the 21st century, Prepublishing version june 1993, Chicago
Kent Law School.

[Susskind, 1987] Susskind, Richard E. (1987), Expert Systems in Law - A
Jurisprudential Inquiry, Clarendon Press - Oxford.

[Svensson, 1993] Svensson, J.S. (1993) Kennisgebaseerde microsimulatie, een nieuwe
methode voor het bepalen van sociaal-economische gevolgen van wet- en regelgeving
in de sociale zekerheid. Thesis, Faculteit der Bestuurskunde, Universiteit Twente,
Enschede.

